Lecture 5 – Networks of Neurons and **Associative Memory**

- Introduction
- Associative memory and Classification by similarity
- Detour: magnetic materials
- Associative Memory
- Hopfield Model
- Memory Capacity

Wulfram Gerstner, EPFL

Systems for computing and information processing

<table>
<thead>
<tr>
<th>Brain</th>
<th>Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Distributed architecture

<table>
<thead>
<tr>
<th>1 CPU</th>
<th>(10^10 transistors)</th>
</tr>
</thead>
</table>

Von Neumann architecture

<table>
<thead>
<tr>
<th>1 CPU</th>
<th>(10^10 transistors)</th>
</tr>
</thead>
</table>

No separation of processing and memory

Associations, Associative Memory

Read this text NOW!
- Classification by similarity: **pattern recognition**

<table>
<thead>
<tr>
<th>image</th>
<th>Prototypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noisy image</td>
<td>A</td>
</tr>
</tbody>
</table>

Blackboard:

- recognize/understand images: **pattern recognition**

\[|x - p^T_1| \leq |x - p^A_1| \]

<table>
<thead>
<tr>
<th>Noisy image</th>
<th>Prototypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T</td>
</tr>
</tbody>
</table>

Aim: Understand Associative Memory

Pattern recognition/Pattern completion

<table>
<thead>
<tr>
<th>Noisy image</th>
<th>Full image</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial word</td>
<td>T</td>
</tr>
</tbody>
</table>

Brain-style computation

Detour: magnetism

- Noisy magnet

- pure magnet
Detour: magnetism

Elementary magnet

\[S_i (t + 1) = \text{sgn} \sum_j w_{ij} S_j \]

Sum over all interactions with i

Blackboard: example

Anti-ferromagnet

\[S_i (t + 1) = \text{sgn} \sum_j w_{ij} S_j \]

Sum over all interactions with i

Associative memory

Elementary pixel

\[S_i (t + 1) = \text{sgn} \sum_j w_{ij} S_j \]

Sum over all interactions with i

Hopfield model

Exercise 1: Associative memory (1 pattern)

- Introduction
- Associative Memory and Classification by similarity
- Detour: magnetic materials
- Detour: magnetic materials
- Hopfield Model
- Dense networks (mean-field)

Next lecture at 10h15

9 neurons
- define appropriate weights
- what happens if one neuron wrong?
- what happens if n neurons wrong?

9 neurons
- define appropriate weights
- what happens if one neuron wrong?
- what happens if n neurons wrong?
Associative memory – many patterns

Prototype \(\mathbf{p}_1 \)

Prototype \(\mathbf{p}_2 \)

Hopfield model

\[S_i(t + 1) = \text{sgn} \left(\sum_{j} w_{ij} S_j \right) \]

Interacting neurons

Prototype \(\mathbf{p}_1 \)

\(\text{Finds the closest prototype} \)
(\(\text{i.e. maximal overlap} \))

(\(\text{similarity} \)) \(m^H \)

Hopfield model

Computation
- without CPU,
- without explicit memory unit

Where do the connections come from?

Hebbian Learning

When an axon of cell \(j \) repeatedly or persistently takes part in firing cell \(i \), then \(j \)'s efficiency as one of the cells firing \(i \) is increased

\(\text{Hebb, 1949} \)

- local rule
- simultaneously active (correlations)

Hebbian Learning

DEM0

Random patterns, fully connected:

Hopfield model

\[S_i(t + 1) = \text{sgn} \left(\sum_{j} w_{ij} S_j \right) \]

\(\text{This rule is very good for random patterns} \)

\(\text{It does not work well for correlated patterns} \)
Hebbian Learning – Associative Recall

Recall:
Partial info

Item recalled

Associative Recall

Tell me the color
the following list of 5 items:

Red
Blue
Yellow
Green

Stroop effect:

Slow response: hard to work
Against natural associations

Exercises 2+3 now: learning of prototypes

Prototype \hat{p}^1
Prototype \hat{p}^2

be as fast as possible:

Sum over all interactions with i

a) Show that (1) corresponds to a rate learning rule

$$\frac{d}{dt} w_{ij} = \alpha_i \nu_j^{pre} (\gamma_j + \delta) \nu_j^{post} - \delta$$

Assume that weights are zero at the beginning.

Each pattern is presented (enforced) during 0.5 sec (One after the other).

b) Compare with:

$$\frac{d}{dt} w_{ij} = \alpha_i + \alpha_j^{pre} \nu_j^{pre} + \alpha_j^{post} \nu_j^{post} + \alpha_j^{post} \nu_j^{pre} \nu_j^{post} + \ldots$$

Exercise 2+3 (start now, rest homework)

Assume 4 patterns. At time $t=0$, overlap with Pattern 3, no overlap with other patterns.

discuss temporal evolution

(assume that patterns are orthogonal)

Associative Recall

Hierarchical organization of Associative memory

animals

birds

fish

Name as fast as possible

an example of a bird

swan (or goose or raven or …)

Write down first letter: s for swan or r for raven …
Associative Recall
Nommez au plus vite possible un exemple d’un /d’une
name as fast as possible an example of a
outil tool
couleur color
fruit fruit
instrument music instrument

Lecture 5 – Network of neurons and associative memory

- Introduction
- Classification by similarity
- Detour: magnetic materials
- Associative Memory
- Hopfield model
- How many patterns?

Memory Capacity

Q: How many prototypes can be stored?

Prototype \(p^1 \)
Prototype \(p^2 \)

Q: How many prototypes can be stored?

Prototype \(p^1 \)
Prototype \(p^2 \)

Dynamics (2)
\[S_i (t + 1) = \text{sgn} \sum_j w_{ij} S_j \]
Sum over all interactions with i

Exercise 4 now: Associative memory

Q: How many prototypes can be stored?

Prototype \(p^1 \)
Prototype \(p^2 \)

End of lecture, exercise+
Computer exercise: 12:00

Random patterns
Interactions (1)
\[w_{ij} = \frac{1}{N} \sum_{\mu} p_i^\mu p_j^\mu \]
Sum over all prototypes

Random patterns \(\rightarrow \) random walk

a) show relation to erf function: importance of \(p/N \)
b) network of 1000 neurons – allow at most 1 wrong pixel?
c) network of \(N \) neurons – at most 1 promille wrong pixels?

The end